

ARCHI 2018 | February 8th, 2018

2nd Symposium Applied Research on Charging Infrastructure

Solar powered bidirectional EV charger with V2G

Goal

 Develop a highly efficient, modular, smart charging station for electric vehicles with V2G that is powered by solar energy

Motivation

Power converter

Charging algorithms

Solar powered bidirectional EV charger

System architecture

AC interconnection of EV and PV

EV Charger

Charging of EV from PV: Our solution

last mile « solutions

Integrated Design

Only one DC/AC converter

- → Lower cost of converter
- DC-DC connection of EV-PV
- → Improved efficiency
- Bi-directionality of DC/AC inverter → Charge / V2G

G. R. Chandra Mouli, P. Bauer, and M. Zeman, "Comparison of system architecture and converter topology for a solar powered electric vehicle charging station," in 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), 2015, pp. 1908–1915.

4 Power Flows

- 1. PV \rightarrow EV
- 2. Grid \rightarrow EV
- 3. EV \rightarrow Grid
- 4. PV → Grid

3x Power Density

DCE&S

DC systems, Energy conversion & Storage

- Higher power density
- Higher efficiency
- Bidirectional EV charging

- SiC MOSFET, diode
- Interleaving of converters
- Powdered alloy inductors

ĨUDelft

Power Converter Efficiency

- Power converter efficiency
- Peak Efficiency Grid ↔ EV : 95.4%
- Peak Efficiency PV → Grid: 96.4%
- Peak Efficiency PV → EV : 95.2%

CHAdeMO & CCS compatible

- Level 2, Mode 4, Type 4 DC charging of up to 10kW
 - CHAdeMO
 - Combined charging system (CCS)
- 10kW*(8h) = 80kWh delivered to EV
- 390V EV successfully (dis)charged with 24A

Power converter

Charging algorithms

Solar powered bidirectional EV charger

Energy Management System (EMS)

How can a EV fleet be optimally charged at workplace based on:

Energy Management System (EMS)

D. van der Meer; G. R. Chandra Mouli; G. Morales-Espana; L.R. Elizondo; P. Bauer, "Energy Management System with PV Power Forecast to Optimally Charge EVs at the Workplace," in *IEEE Transactions on Industrial Informatics*

G. R. Chandra Mouli, R. Baldick, M.Kefayati, and P. Bauer, "Integrated PV Charging of EV Fleet Based on Dynamic Prices, V2G and Offer of Reserves", IEEE Transactions on Smart Grids, 2017, accepted

Case Netherlands: Scenario 1

- EV car park with 4 EV connected to one EV-PV charger
- Energy prices from APX

$$C_{net} = Cost(EV charging) - Sales (PV power)$$

	PV self consumption (%)	E _{grid} (kWh)	C _{tot} (€)	Cost reduction (%)
Uncontrolled charging	73.65	39.61	2.181	
Optimal charging	82.41	27.07	-0.4022	118.44

Case Netherlands: Scenario 2

- EV car park with
 - 4 EV connected to one EV-PV charger
 - 2 EV connected to second EV-PV charger
- Energy prices from APX

$$C_{net} = Cost(EV charging) - Sales (PV power)$$

	PV self consumption (%)	E _{grid} (kWh)	C _{tot} (€)	Cost reduction (%)
Uncontrolled charging	58.04	94.24	-1.468	
Optimal charging	66.32	75.20	-7.743	427.45

Case Texas

- EV car park with 60 EV and 40 Chargers with solar
- Energy and regulation prices from ERCOT market
- 32% to 651% cost reduction ©

Charging Strategy	AVERAGE RATE	UNCONTROLLED	OPTIMAL
C^{ar} , C^{imm} , C^{opt} (\$)	37.9	29.0	-15.3
$C_{\%}^{imm}$, $C_{\%}^{opt}$ (%)		31.72	158.63

Case Texas

- EV car park with 60 EV and 40 Chargers
- Energy and regulation prices from ERCOT market
- 32% to 651% cost reduction ©

Case	Bidirectional V2G	Energy prices	Regulation services	PV forecast
Case 1	No	No	Yes	No
	INO	INU	163	NO
Case 2	No	Yes	No	No
Case 3	No	Yes	Yes	No
Case 4	No	Yes	No	Yes
Case 5	Yes	No	Yes	Yes
Case 6	No	Yes	Yes	Yes
OPTIMAL	Yes	Yes	Yes	Yes

ŤUDelft

Case Texas

- EV car park with 60 EV and 40 Chargers
- Energy and regulation prices from ERCOT market
- 32% to 651% cost reduction ©

ŤUDelft

PV charging of EV at workplace

www.youtube.com/watch?v=smrOCOLxBvg

Free Online Courses

ELECTRIC CARS: TECHNOLOGY, BUSINESS, POLICY

Start Date 20 Feb 2018 Course Length

4 x 4 Weeks

Estimated Effort

4 Hrs/Week

Enrollment Via

http://www.tiny.cc/evmooc

